Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Радиотехника » Искусство схемотехники. Том 1 [Изд.4-е] - Пауль Хоровиц

Искусство схемотехники. Том 1 [Изд.4-е] - Пауль Хоровиц

Читать онлайн Искусство схемотехники. Том 1 [Изд.4-е] - Пауль Хоровиц

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 127
Перейти на страницу:

I = U/(1/ωC).

(Напомним, что ω = 2πf). Конденсатор ведет себя как резистор, сопротивление которого зависит от частоты и определяется выражением R = 1/ωC, и, кроме того, ток, протекающий через конденсатор, сдвинут по фазе на 90° относительно напряжения (рис. 1.48).

Рис. 1.48.

Например, через конденсатор емкостью 1 мкФ, подключенный к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц, будет протекать ток, эффективная амплитуда которого определяется следующим образом: I = 110/[1/(2π·60·10-6)] = 41,5 мА (эффективное значение).

Замечание: сейчас нам необходимо воспользоваться комплексными переменными; при желании вы можете пропустить математические выкладки, приводимые в последующих разделах, и принять на веру полученные результаты (они выделены в тексте). Не думайте, что подробные алгебраические преобразования, приводимые в этих разделах, необходимы для понимания всего остального материала книги. Это не так - глубокое знание математики похвально, но совсем не обязательно. Следующий раздел, пожалуй, наиболее труден для тех, у кого нет достаточной математической подготовки. Но пусть это вас не огорчает.

Определение напряжения и тока с помощью комплексных чисел. Только что вы убедились в том, что в цепи переменного тока, работающей с синусоидальным сигналом некоторой частоты, возможен сдвиг по фазе между напряжением и током. Тем не менее если схема содержит только линейные элементы (резисторы, конденсаторы, индуктивности), то амплитуда токов на всех участках схемы пропорциональна амплитуде питающего напряжения. В связи с этим можно попытаться найти некоторые общие выражения тока, напряжения и сопротивления и обобщить тем самым закон Ома.

Очевидно, что для того, чтобы определить ток в какой-либо точке схемы, недостаточно задать одно значение-дело в том, что ток характеризуется как амплитудой, так и сдвигом фазы.

Конечно, можно определять амплитуды и фазовые сдвиги напряжений и токов явно, например U(t) = 23,7·sin(377·t + 0,38), но оказывается, что проще это делать с помощью комплексных чисел. Вместо того чтобы тратить время и силы на сложение и вычитание синусоидальных функций, можно легко и просто складывать и вычитать комплексные числа. Так как действующие значения напряжения и тока представляют собой реальные количественные величины, изменяющиеся во времени, следует вывести правило для перевода реальных количественных величин в комплексное представление и наоборот. Напомним еще раз, что мы имеем дело с частотой синусоидального колебания ω, и сформулируем следующие правила:

1. Напряжение и ток представляются комплексными величинами U и I.

Напряжение U0cos(ωt + φ) представляется комплексным числом U0ejφ. Напомним, что ejθ = cos θ + jsin θ, где j = √—1.

2. Для того чтобы получить выражение для действующего напряжения и тока, нужно умножить соответствующие комплексные представления на ejωt и выделить действительную часть. Это записывается следующим образом: U(t) = Re(U·ejωt), Ι(t) = Re(I·ejωt). Иначе говоря,

(В электронике символ j используется вместо принятого в алгебре для комплексной переменной символа i, с тем чтобы избежать путаницы с током, который также обозначают символом i). Итак, в общем случае действующие напряжения и токи определяются следующим образом:

U(t) = Re(U·ejωt) = Re(U)·cos ωt — Im(U)·sin ωt,

Ι(t) = Re(I·ejωt) = Re(I)·cos ωt — Im(I)·sin ωt,

Например, комплексному напряжению U = 5j соответствует реальное напряжение

U(t) = Re[5j·cos ωt + 5j(j)·sin ωt] = 5sin ωt B

Реактивное сопротивление конденсаторов и индуктивностей. Принятое соглашение позволяет применять закон Ома для схем, содержащих как резисторы, так и конденсаторы, и индуктивности.

Определим реактивное сопротивление конденсатора и индуктивности. Нам известно, U(t) = Re(U0·ejωt). Так как в случае конденсатора справедливо выражение I = C(dU/dt), получим

Ι(t) = — U0Cω·sin ωt = Re[U0·ejωt/(-j/ωC)] = Re(U0·ejωt/XC),

т. е. для конденсатора

XC = — j/ωC,

ХC — это реактивное сопротивление конденсатора на частоте ω. Конденсатор емкостью 1 мкФ, например, имеет реактивное сопротивление —2653j Ом на частоте 60 Гц и —0,16j Ом на частоте 1 МГц. Для постоянного тока реактивное сопротивление равно бесконечности. Аналогичные рассуждения для индуктивности дают следующий результат:

XL = jωL.

Схема, содержащая только конденсаторы и индуктивности, всегда обладает мнимым импедансом; это значит, что напряжение и ток всегда сдвинуты по фазе друг относительно друга на 90°- схема абсолютно реактивна. Если в схеме присутствуют резисторы, то импеданс имеет и действительную часть. Под реактивным сопротивлением подразумевается при этом только мнимая часть импеданса.

Обобщенный закон Ома. Соглашения, принятые для представления напряжений и токов, позволяют записать закон Ома в следующей простой форме:

I = U/ZU = I·Z, означающей, что напряжение U, приложенное к схеме с импедансом Z, порождает ток I. Импеданс последовательно и параллельно соединенных элементов определяется по тем же правилам, что и сопротивление последовательно и параллельно соединенных резисторов:

= Z1 + Z2 + Z3 +…

(для последовательного соединения),

И в заключение приведем формулы для определения импеданса резисторов, конденсаторов и индуктивностей:

ZR = R (резистор),

ZC = —j/ωC (конденсатор),

ZL = jωL (индуктивность).

Полученные зависимости позволяют анализировать любые схемы переменного тока с помощью методов, принятых для схем постоянного тока, а именно с помощью закона Ома и формул для последовательного и параллельного соединения элементов. Результаты, которые мы получили при анализе таких схем, как, например, делитель напряжения, сохраняют почти такой же вид. Так же как и для схем постоянного тока, для сложных разветвленных схем переменного тока справедливы законы Кирхгофа; отличие состоит в том, что вместо токов I и напряжений U здесь следует использовать их комплексные представления: сумма падений напряжения (комплексного) в замкнутом контуре равна нулю; сумма токов (комплексных), втекающих в узел, равна сумме токов (комплексных), вытекающих из него. Из последнего правила, как и в случае с цепями постоянного тока, вытекает, что ток (комплексный) в последовательной цепи всюду одинаков.

Упражнение 1.16. Используя формулы для импеданса параллельного и последовательного соединения элементов, выведите формулы (разд. 1.12) для емкости двух конденсаторов, соединенных (а) параллельно, (б) последовательно. Подсказка: допустим, что в каждом случае конденсаторы имеют емкость С1 и С2. Запишите выражение для импеданса параллельно и последовательно соединенных элементов и приравняйте его импедансу конденсатора с емкостью С. Найдите С.

Попробуем воспользоваться рекомендованным методом для анализа простейшей цепи переменного тока, которая состоит из конденсатора, к которому приложено напряжение переменного тока. После этого кратко остановимся на вопросе о мощности в реактивных схемах (это будет последний кирпич в фундаменте наших знаний) и рассмотрим простую, но очень полезную схему RC-фильтра.

Представим себе, что к силовой сети с напряжением 110 В (эффективное значение) и частотой 60 Гц подключен конденсатор емкостью 1 мкФ. Какой ток протекает при этом через конденсатор?

Воспользуемся обобщенным законом Ома: Ζ = —j/ωC. Следовательно, ток можно определить следующим образом: I = U/Z.

1 ... 11 12 13 14 15 16 17 18 19 ... 127
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Искусство схемотехники. Том 1 [Изд.4-е] - Пауль Хоровиц.
Комментарии